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These are some notes from Dr. Guanya Shi's aerial mobility lectures at CMU. Learn more about him

at gshi.me.

1. Modeling aerial vehicles

Let  be our robot's state and  be our control input. We describe our robot's change in state as a

function of its current state and some input:

Modeling concerns , how  is found, and how our input  influences it.

1.1. The rotor lift model

Let's consider the motion of a single rotor, where:

 is thrust (in Newtons)

 is torque

 is air density
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 is rotation speed

 is diameter

Under the rotor lift model:

In practice, engineers typically use a thrust to torque ratio, , and simplify ( ) as:

This ratio is typically very small, such that its much harder to control torque than it is to control

thrust.

1.2. Modeling a 2D (planar) drone

Let:

 be position in the world frame

 be velocity in the world frame

 be the angle

 be the angular rate

 be the thrust per rotor

 be the gravity vector

 be mass, inertia, and arm length

Any motion model contains a system of four equations: the translational kinematics and dynamics,

and the rotational kinematics and dynamics. As a reminder, dynamics refers to physical forces and

moments.

We can model a 2D drone as:

Let's make some simplifications. First, we define total thrust  and torque

.

Let's then define an actuation matrix, which combines total thrust and torque into a single

equation:

Finally, we define state and input as:
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These additional formulas allow us to simplify ( ) as:

1.3. Modeling a quadrotor

Our 3D model will operate in two coordinate frames:

{ }, the right-handed world frame (also called the inertial frame)

{ }, the right-handed body frame

1.3.1. Orientation

 are the axes of { } w.r.t. the world frame { }. The the orientation of our quadrotor is

given by the rotation matrix . (The appendix briefly explains what 

means.)

We can also model orientation as a quaternion or in Euler parameterization.

1.3.2. Actuation matrix

Recall that an actuation matrix is a combined representation of the total thrust and torque of a

drone, as a function of the individual thrusts of its rotors. In 2D this was a , but in 3D it's a

 matrix:

where , the thrust-to-torque ratio specific to each drone.

1.3.3. Kinematics and dynamics

where  is a special matrix that maps a vector to its skew-symmetric matrix form:
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2. Setpoint and trajectory tracking controllers

2.1. The goal

Recall that modeling concerns the function , the change in our robot's state given its

current state and some input. Specifically, modeling studies how our state responds to some input

.

By contrast, control is about designing some feedback controller or policy  that leads to some

desired trajectory or setpoint .

2.2. The trajectory tracking controller

 It's common for drone controllers to have what we call "double integrator dynamics." That means

that our input . Our tracking controller takes the form:

where  is our feedforward term. If our goal is setpoint tracking, then .

What's the point of the feedforward term, anyway? Well, our tracking error is . Then we

can rework ( ) as:

The above only works if we add the feedforward term. The intuition is that this term allows us to

predict and brace for future error states.

2.3. Cascaded trajectory tracking

In this approach, the nonlinear trajectory tracking task is separated into two linear controllers.

The first calculates a desired force vector that would align the drone with the target trajectory. The

second calculates the desired rotor torques that would align the drone with the force vector.

This separation leads to two sets of gains. In the typical case where PD controllers are used, this

means a  for the force controller and  for the torque controller.

Here's some code for cascaded control:

def cascaded_control(self, p_d, yaw_d):
    # Helpful stuff
    e3 = np.array([0., 0., 1.])
    z = self.R @ e3
 
    # position control
    K_P = 35.0
    K_D = 6.0
 
    # attitude control
    K_Ptau = 200.0
    K_Dtau = 40.0
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And here are (some of) the equations used.

    f_d = -np.array([0., 0., -self.g]) - K_P * (self.p - p_d) - K_D * (self.v - v_d) + a_d
    T = (f_d.T @ z) * self.m
    z_d = f_d/norm(f_d)
    # R_d is the combination of z_d and yaw_d
    R_d = z_d + yaw_d 
    n = np.cross(e3, z_d)
    rho = np.arcsin(norm(n))
    if norm(n) �� 0: # Check for divide by zero
        R_EB = np.eye(3)
    else:
        R_EB = Rotation.from_rotvec(rho * (n/norm(n))).as_matrix()
    R_AE = Rotation.from_euler('z', yaw_d).as_matrix()
    R_d = R_AE @ R_EB
    R_e = R_d.T @ self.R
 
    # Skew symetric form
    R_ess = R_e-R_e.T 
    # Vectorized
    R_ev = np.array([R_ess[2,1], R_ess[0,2], R_ess[1,0]])
    alpha = -K_Ptau * R_ev - K_Dtau * self.omega
    
    # Map alpha to tau
    Ji = self.J_inv
    J = self.J
    A = Ji @ np.cross(J@self.omega, self.omega)
    tau = J @ (alpha - A)
    Ttau = np.concatenate(([T], tau))
 
    # Map [T, tau] to individual thrusts
     # u = [T1, T2, T3, T4], one per rotor
    u = self.B_inv @ Ttau
 
    return u



2.4. Linear systems and LQR

Given some linear state space model , where  is the dynamics matrix and  is the

control matrix, we can design a policy , where  is our gain matrix.

Our closed-loop system then becomes:

Our system is exponentially stable if  is a Hurwitz matrix: all eigenvalues must have strictly

negative real parts.

We can determine an optimal  using LQR, pole placement, or related techniques.

3. Trajectory generation and optimization

3.1. Overview

We've studied methods by which drones can follow given trajectories. But where do these

trajectories come from? How can we generate reasonable trajectories that link a drone's current

pose to some goal?

Let's divide a drone's tasks into three sections. First, modeling gives our drone a sense of how its

state will change over time, especially given some input . After that, control leverages our model

to move the drone toward a goal pose, or along some trajectory. Finally, planning concern how our

desired poses or trajectories are generated.

Given two poses, there are an infinite number of trajectories that connect them. How can we

narrow our options down? We consider feasibility and optimality (cost).

Let's express trajectory optimization mathematically, with the assumption that our time window is

fixed. We won't consider time-optimal control here.

3.2. Differential flatness

The goal of differential flatness is to relate  to a flat output. This allows us to transform

nonlinear systems into linear controllable ones. The idea was expressed in this paper by Fliess,

Lévine, Martin, and Rouchon in 1992.
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3.2.1. Wheel on flat surface

As an example, consider a wheel of radius  on a flat surface, where  is the wheel's position,  is its

angular velocity, and  is the torque applied to it. Then  and , and we can express

position  as a flat output, where:

In this scenario, we can easily generate smooth trajectories .

3.2.2. The 2D case

Recall that in the 2D drone scenario,  and . Let's define the drone's body

axes as:

Let jerk be  and let snap be   (yes, four dots!).

Our goal: build a 1-1 mapping between  and , which would make  a flat output:

Steps:

1. , , 

2. 

3. 

This means that, lacking any bounds on our drone's rotors, we can track any smooth trajectory using

only !

3.2.3. Adding differential flatness to cascaded control

Using the equations derived above, our cascaded control equations become:
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3.3. Trajectory planning with polynomials

Now that we can track any smooth trajectory within a bounded , let's use polynomials to link

waypoints. For simplicity we'll consider the case of a 2D drone such that state

.

Our goal is to generate a polynomial  that links two waypoints  within a final time  under

the following constraints:

Since we have nine constraints, we'll need to design an 8th-order polynomial of the form:

In this 2D case, we can separate the trajectory into two equations, one for  and one for .

As an example, suppose we wish to move the drone from position  to . Referencing ( ),

we can write 's constraints in matrix form as:

's constraints are identical except that the rightmost matrix is all zeros ( ).

Once we have both systems in matrix form, then we can take the inverse of the leftmost matrix to

find the polynomials' coefficients.
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Appendix

Wait, what's ?

The group of all possible rotations in 3D is called the special orthogonal group, denoted as .

This is the set of all  real matrices such that:

1.  and

2. .

Similarly, the set of all 2D rotation matrices is called .

Recall that in linear algebra, a group is a set of elements, where the product of any two elements is

just another element in the group, and the inverse of any element is also in the group.

In other words, given any two matrices , then  and .
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