
Drone modeling, dynamics, and control

Drone modeling, dynamics, and control

Outline

1. Modeling aerial vehicles

1.1. The rotor lift model

1.2. Modeling a 2D (planar) drone

1.3. Modeling a quadrotor

1.3.1. Orientation

1.3.2. Actuation matrix

1.3.3. Kinematics and dynamics

2. Setpoint and trajectory tracking controllers

2.1. The goal

2.2. The trajectory tracking controller

2.3. Cascaded trajectory tracking

2.4. Linear systems and LQR

3. Trajectory generation and optimization

3.1. Overview

3.2. Differential flatness

3.2.1. Wheel on flat surface

3.2.2. The 2D case

3.2.3. Adding differential flatness to cascaded control

3.3. Trajectory planning with polynomials

Appendix

Wait, what's ?

Outline

These are some notes from Dr. Guanya Shi's aerial mobility lectures at CMU. Learn more about him

at gshi.me.

1. Modeling aerial vehicles

Let be our robot's state and be our control input. We describe our robot's change in state as a

function of its current state and some input:

Modeling concerns , how is found, and how our input influences it.

1.1. The rotor lift model

Let's consider the motion of a single rotor, where:

 is thrust (in Newtons)

 is torque

 is air density

af://n0
af://n3
http://gshi.me/
af://n5
af://n9

 is rotation speed

 is diameter

Under the rotor lift model:

In practice, engineers typically use a thrust to torque ratio, , and simplify () as:

This ratio is typically very small, such that its much harder to control torque than it is to control

thrust.

1.2. Modeling a 2D (planar) drone

Let:

 be position in the world frame

 be velocity in the world frame

 be the angle

 be the angular rate

 be the thrust per rotor

 be the gravity vector

 be mass, inertia, and arm length

Any motion model contains a system of four equations: the translational kinematics and dynamics,

and the rotational kinematics and dynamics. As a reminder, dynamics refers to physical forces and

moments.

We can model a 2D drone as:

Let's make some simplifications. First, we define total thrust and torque

.

Let's then define an actuation matrix, which combines total thrust and torque into a single

equation:

Finally, we define state and input as:

af://n27

These additional formulas allow us to simplify () as:

1.3. Modeling a quadrotor

Our 3D model will operate in two coordinate frames:

{ }, the right-handed world frame (also called the inertial frame)

{ }, the right-handed body frame

1.3.1. Orientation

 are the axes of { } w.r.t. the world frame { }. The the orientation of our quadrotor is

given by the rotation matrix . (The appendix briefly explains what

means.)

We can also model orientation as a quaternion or in Euler parameterization.

1.3.2. Actuation matrix

Recall that an actuation matrix is a combined representation of the total thrust and torque of a

drone, as a function of the individual thrusts of its rotors. In 2D this was a , but in 3D it's a

 matrix:

where , the thrust-to-torque ratio specific to each drone.

1.3.3. Kinematics and dynamics

where is a special matrix that maps a vector to its skew-symmetric matrix form:

af://n54
af://n61
af://n64
af://n68

2. Setpoint and trajectory tracking controllers

2.1. The goal

Recall that modeling concerns the function , the change in our robot's state given its

current state and some input. Specifically, modeling studies how our state responds to some input

.

By contrast, control is about designing some feedback controller or policy that leads to some

desired trajectory or setpoint .

2.2. The trajectory tracking controller

 It's common for drone controllers to have what we call "double integrator dynamics." That means

that our input . Our tracking controller takes the form:

where is our feedforward term. If our goal is setpoint tracking, then .

What's the point of the feedforward term, anyway? Well, our tracking error is . Then we

can rework () as:

The above only works if we add the feedforward term. The intuition is that this term allows us to

predict and brace for future error states.

2.3. Cascaded trajectory tracking

In this approach, the nonlinear trajectory tracking task is separated into two linear controllers.

The first calculates a desired force vector that would align the drone with the target trajectory. The

second calculates the desired rotor torques that would align the drone with the force vector.

This separation leads to two sets of gains. In the typical case where PD controllers are used, this

means a for the force controller and for the torque controller.

Here's some code for cascaded control:

def cascaded_control(self, p_d, yaw_d):
 # Helpful stuff
 e3 = np.array([0., 0., 1.])
 z = self.R @ e3

 # position control
 K_P = 35.0
 K_D = 6.0

 # attitude control
 K_Ptau = 200.0
 K_Dtau = 40.0

af://n179
af://n180
af://n183
af://n190

And here are (some of) the equations used.

 f_d = -np.array([0., 0., -self.g]) - K_P * (self.p - p_d) - K_D * (self.v - v_d) + a_d
 T = (f_d.T @ z) * self.m
 z_d = f_d/norm(f_d)
 # R_d is the combination of z_d and yaw_d
 R_d = z_d + yaw_d
 n = np.cross(e3, z_d)
 rho = np.arcsin(norm(n))
 if norm(n) �� 0: # Check for divide by zero
 R_EB = np.eye(3)
 else:
 R_EB = Rotation.from_rotvec(rho * (n/norm(n))).as_matrix()
 R_AE = Rotation.from_euler('z', yaw_d).as_matrix()
 R_d = R_AE @ R_EB
 R_e = R_d.T @ self.R

 # Skew symetric form
 R_ess = R_e-R_e.T
 # Vectorized
 R_ev = np.array([R_ess[2,1], R_ess[0,2], R_ess[1,0]])
 alpha = -K_Ptau * R_ev - K_Dtau * self.omega

 # Map alpha to tau
 Ji = self.J_inv
 J = self.J
 A = Ji @ np.cross(J@self.omega, self.omega)
 tau = J @ (alpha - A)
 Ttau = np.concatenate(([T], tau))

 # Map [T, tau] to individual thrusts
 # u = [T1, T2, T3, T4], one per rotor
 u = self.B_inv @ Ttau

 return u

2.4. Linear systems and LQR

Given some linear state space model , where is the dynamics matrix and is the

control matrix, we can design a policy , where is our gain matrix.

Our closed-loop system then becomes:

Our system is exponentially stable if is a Hurwitz matrix: all eigenvalues must have strictly

negative real parts.

We can determine an optimal using LQR, pole placement, or related techniques.

3. Trajectory generation and optimization

3.1. Overview

We've studied methods by which drones can follow given trajectories. But where do these

trajectories come from? How can we generate reasonable trajectories that link a drone's current

pose to some goal?

Let's divide a drone's tasks into three sections. First, modeling gives our drone a sense of how its

state will change over time, especially given some input . After that, control leverages our model

to move the drone toward a goal pose, or along some trajectory. Finally, planning concern how our

desired poses or trajectories are generated.

Given two poses, there are an infinite number of trajectories that connect them. How can we

narrow our options down? We consider feasibility and optimality (cost).

Let's express trajectory optimization mathematically, with the assumption that our time window is

fixed. We won't consider time-optimal control here.

3.2. Differential flatness

The goal of differential flatness is to relate to a flat output. This allows us to transform

nonlinear systems into linear controllable ones. The idea was expressed in this paper by Fliess,

Lévine, Martin, and Rouchon in 1992.

af://n199
https://en.wikipedia.org/wiki/Hurwitz_matrix
af://n178
af://n207
af://n223
https://www.sciencedirect.com/science/article/pii/S1474667017522752

3.2.1. Wheel on flat surface

As an example, consider a wheel of radius on a flat surface, where is the wheel's position, is its

angular velocity, and is the torque applied to it. Then and , and we can express

position as a flat output, where:

In this scenario, we can easily generate smooth trajectories .

3.2.2. The 2D case

Recall that in the 2D drone scenario, and . Let's define the drone's body

axes as:

Let jerk be and let snap be (yes, four dots!).

Our goal: build a 1-1 mapping between and , which would make a flat output:

Steps:

1. , ,

2.

3.

This means that, lacking any bounds on our drone's rotors, we can track any smooth trajectory using

only !

3.2.3. Adding differential flatness to cascaded control

Using the equations derived above, our cascaded control equations become:

af://n229
af://n236
af://n297

3.3. Trajectory planning with polynomials

Now that we can track any smooth trajectory within a bounded , let's use polynomials to link

waypoints. For simplicity we'll consider the case of a 2D drone such that state

.

Our goal is to generate a polynomial that links two waypoints within a final time under

the following constraints:

Since we have nine constraints, we'll need to design an 8th-order polynomial of the form:

In this 2D case, we can separate the trajectory into two equations, one for and one for .

As an example, suppose we wish to move the drone from position to . Referencing (),

we can write 's constraints in matrix form as:

's constraints are identical except that the rightmost matrix is all zeros ().

Once we have both systems in matrix form, then we can take the inverse of the leftmost matrix to

find the polynomials' coefficients.

af://n206

Appendix

Wait, what's ?

The group of all possible rotations in 3D is called the special orthogonal group, denoted as .

This is the set of all real matrices such that:

1. and

2. .

Similarly, the set of all 2D rotation matrices is called .

Recall that in linear algebra, a group is a set of elements, where the product of any two elements is

just another element in the group, and the inverse of any element is also in the group.

In other words, given any two matrices , then and .

af://n305
af://n74

	Drone modeling, dynamics, and control
	Outline
	1. Modeling aerial vehicles
	1.1. The rotor lift model
	1.2. Modeling a 2D (planar) drone
	1.3. Modeling a quadrotor
	1.3.1. Orientation
	1.3.2. Actuation matrix
	1.3.3. Kinematics and dynamics

	2. Setpoint and trajectory tracking controllers
	2.1. The goal
	2.2. The trajectory tracking controller
	2.3. Cascaded trajectory tracking
	2.4. Linear systems and LQR

	3. Trajectory generation and optimization
	3.1. Overview
	3.2. Differential flatness
	3.2.1. Wheel on flat surface
	3.2.2. The 2D case
	3.2.3. Adding differential flatness to cascaded control

	3.3. Trajectory planning with polynomials

	Appendix
	Wait, what's SO(3)?

